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PREFACE

Although tests have shown that Halon 1301 systems are effective in extinguishing weapon-

induced fuel fires in combat vehicles, other approaches to solving the fuel-fire problem are still

feasible. The use of "powder packs," thin containers of fire-extinguishing powder attached to the

exterior walls of fuel cells, may be indicated when the cost of a halon system is too high. This can be

applied in the retrofitting of older vehicles, which are approaching the end of their useful combat lives,

but could still benefit from some type of automatic fire-suppression system.

The growing amount of evidence that chloro-fluoro and halon compounds are attacking the

Earth's ozone layer may eventually make it difficult to justify using Halon 1301 in our combat

vehicles. The U.S. Army should have an alternative method of extinguishing fires in our combat

vehicles.

The low cost and the simplicity of powder packs make them attractive both as a field expedient

approach and as an original equipment approach to providing fire protection to combat vehicles.
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1. INTRODUCTION

1.1 Background. The U.S. Army is pursuing a policy of equipping new combat vehicles with

active fire-protection systems, namely Halon 1301 systems. These systems are specified for combat

vehicles because of their ability to extinguish the "mist-fireball explosion" ("SAFE System" 1982).
The mist-fireball explosion is encountered when a shaped-charge jet passes through vehicle armor,

then through the fuel cell, causing a mist of fuel to form in the open volume of the vehicle. This mist
is virtually always ignited by the hot metallic spall, which forms when the jet erodes the vehicle armor

or any other metallic structure it penetrates. The rapid flame spread through the fuel mist is
accompanied by a significant pressure pulse. The high temperature of the flame and the high pressure

can cause serious injuries to personnel inside the vehicle.

Tests (Barger 1969; Hayes 1969; Romanelli 1972) have shown that a properly functioning Halon
1301 automatic fire suppression system can completely extinguish the mist-fireball explosion in

250 ms or less. There is evidence that this rapid quenching of fire will prevent bum injuries to crew
members (Romanelli 1972). An automatic fire suppression system is especially important in vehicles

that carry fuel cells in the crew compartments (such as the M1, MIAl, M2, M3 and MI13 vehicles.)
A Halon 1301 system is also capable of extinguishing fires due to burning hydraulic-fluid mists.

Vehicles such as the MI, MIA1, M60 and FAASV, which have hydraulic systems in the crew

compartments, can benefit from crew compartment automatic fire suppression systems. The M 113 and

the M60 vehicles are not equipped with automatic fire suppression systems.

It is important that a fuel fire in the crew compartment be suppressed very quickly. Halon 1301

systems are capable of doing this. The very high fire-extinguishing efficiency of Halon 1301 is due
largely to its ability to enter directly into the chemistry of the hydrocarbon combustion reactions.

Hydrogen atoms are removed from the reaction zone by the action of the halon (Finnerty 1976). Since

hydrogen atoms are of paramount importance in the combustion mechanism, their removal effectively

destroys the flame zone and stops combustion.

There is a negative side to the use of Halon 1301. Chemical quenching of the fire involves

reactions that form toxic products, such as hydrogen fluoride (HF) and hydrogen bromide (HBr)

(Porter, Schmidt, and Bishop 1985; Weeks, Mellick, and Steinberg 1972). There is even a suspicion

that bromine (Br 2) may be formed (Richards 1976). The amounts of toxic gases formed will be



influenced by the size of the fireball, the speed of extinguishment, and the thoroughness of mixing the

agent with the air in the crew compartment. The acids (HF and HBr) act as nuclei for condensation of

water vapor, causing a fog to form inside the compartment. This fog can cause a total loss of

visibility inside the vehicle (Porter, Schmidt, and Bishop 1985). The level of irritation caused by the

acids is expected to be very high for personnel. The spill, which may involve many gallons of hot

fuel, will only add to the general distress inside the vehicle. The current Army recommendation is that

after a fire has been extinguished by Halon 1301, personnel don protective breathing devices or exit

the vehicle (Ripple and Mundie 1989).

There are fires, such as ammunition fires, which are not extinguished by Halon 1301 (Finnerty

1982). The high flame temperature associated with these fires may cause excessive amounts of toxic

products to form if Halon 1301 is discharged into an ammunition fire (Polyanski 1989a).

Unfortunately, the detectors used with the current fire-suppression systems respond to ammunition fires

as well as to hydrocarbon fires. Therefore, the Halon 1301 will be discharged into an ammunition fire

in the crew compartment of a vehicle (Polyanski 1989a).

1.2 Advantages and Disadvantages of Passive Approaches. There are several advantages in the

utilization of passive fire-protection approaches in combat vehicles. Among these are:

* Passive devices are less likely to be compromised by lack of maintenance.

" Failure of the vehicle's electrical system will not render passive devices inoperative.

" Passive devices can be iritiated by a penetrator or by spall even before a fuel mist is

formed.

* There are no sensors or electrical wires to be cut by a main penetrator or by spall.

* The possibility of the acc.:dental initiation of a device (false alarm) is minor with passive

fire-extinguishing approaches.

2



* Passive approaches involve inherent components of the vehicles. There are no electrical

switches to accidentally, or deliberately, turn to the off position.

0 There are efficient, nonhalon materials available to use in passive fire-extinguishing

devices. Some of the more efficient of these have such low toxicity that they are

actually unregulated food additives (potassium bicarbonate is such a material.)

There are also disadvantages in the reliance on passive fire-prevention devices. Among these are:

* Passive devices do not normally respond to accidental fires, such as those that are

produced by an accidental fuel leak. A manual extinguisher must also be employed to

extinguish accidental fires.

* If the passive devices do not function adequately to prevent fire, it will be necessary to

rely on personnel to utilize manual fire extinguishers to fight what may be a large fire.

* There may be difficulty in gaining acceptance of what is essentially a low-technology

approach. Many people have been conditioned to believe that only high-technology

solutions to problems are desirable.

* The ruggedness of powder packs has not been demonstrated. In order to be useful, they

must survive normal wear and tear inside a combat vehicle. This ranges from being

leaned against by a soldier to being struck by a rifle butt.

" The long term stability of the powder packs has not been tested. Any water absorption

or compacting of the powder would be cause for concern.

BRL-CS rA (Ballistic Research Laboratory-Combat Systems Test Activity) tests were performed

on the FAASV to establish conditions under which passive automatic fire-extinguishing devices can

extinguish weapon-induced fires in lhe required timeframe (250 ms). The passive devices consisted of

thin containers of fire-extinguishing powder that were arranged so as to surround the exterior of the

hydraulic reservoir or to protect the crew compartment side of the fuel cell. Potassium bicarbonate

powde: was chosen over sodium bicarbonate due to the higher, flame-quenching efficiency of the

3



potassium salt (Nehl 1953). Both materials are considered to be nontoxic (Richards 1976). Both are

used as food additives. The only obvious problem areas are those associated with high concentrations

of nuisance dusts (coughing, eyes smarting, and visibility loss.) We have found no reports of long-

term ill effects from potassium bicarbonate fire-extinguishing powder, even though the U.S. Navy and

the U.S. Coast Guard have been using Purple K (potassium bicarbonate) powder fire extinguishers

since the 1950s. Available toxicity data is given in Appendix A.

2. MATERIALS AND METHODS

2.1 Powder Packs. The powder packs used in these tests were fabricated at the Ballistic

Research Laboratory (BRL). Two thicknesses of containers were tested. Two of the tests involved

powder packs that were 12.7 mm thick, and the other two tests used powder packs 6.4 mm thick.

The powder packs were made by placing the appropriate length, width, and thickness of

aluminum honeycomb onto a sheet of aluminum foil that was 0.08 mm thick. The honeycomb was

glued to the foil using a thin layer of silicone adhesive. After the adhesive had set, the voids in the

honeycomb (95% of the total volume) were filled with fire-extinguishing powder. Purple K

(potassium bicarbonate) was used in all tests. Aluminum foil was then folded over the top and sides

of the honeycomb. Tape was used to seal the foil in place. The completed powder packs were then

ready to be glued and/or taped onto the hydraulic fluid reservoirs or to the crew side of the bulkhead,

which separates the fuel cell from the crew compartment of the FAASV." A pictorial of the

fabrication of a powder pack is given in Figure 1.

2.2 Setup. The shaped-charge attacks on the FAASV were conducted by the Combat Systems

Test Activity (CSTA) at Aberdeen Proving Ground. For the fuel tests, the powder packs were

installed on the bulkhead next to the fuel cell. The powder packs were on the crew side of the

bulkhead because the powder was intended to protect the crew compartment from the fuel fires which

occur when shaped-charge jets cause fuel-mist carrythroughs into the crew section of the vehicle. A

photograph of a powder pack installed on the crew side of the bulkhead is given in Figure 2.

* The fuel cell of the FAASV is not actually in the crew compartment. However, there is only a 12.7-m aluminum
bulkhead separating the fuel cell from the crew compartment. A shaped-charge jet attacking the fuel cell can carry fuel mist into
the crew compartment.
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Figure 1. Fabrication of a Powder Pack.
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Figure 2. Powder Pack Installed on Bulkhead of FAASV.
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Figure 3 shows a hydraulic reservoir bolted into place in the FAASV crew compaument. The

fluid lines were not attached to the reservoirs for these tests. Figure 4 shows the reservo; after an

powder packs were installed. There was a 25-mm to 50-mm air gap between the vehicle inner wall

and the powder pack on the front face of the hydraulic reservoir. The shaped-charge jet entered the

vehicle through that inner wall for the hydraulic fluid reservoir tests.

In all four tests the attacking weapon was a 90-mm-diameter shaped charge, identified as an

M28A2 warhead. This weapon has long been used as a typically hand-held, HEAT round (Beichler

1956; Hanna and Goodman 1955; Zabel eLal. 1988). The standoff from the vehicle armor

(25.4-mm aluminum) was 2 cone diameters (180 mm) in all cases.

2.3 Fluids. Diesel fuel with an average open cup flash point of 870 C was used in the fuel cell

tests. The fuel cell was filled with 190 to 208 liters of fuel. The fuel temperature varied between

710 C and 820 C for the tests.

Hydraulic fluid, M1.6080, conventional 93* C flash point red fluid, was used in the hydraulic

fluid reservoir tests. Approximately 49 liters of fluid at 65.50 C to 710 C were used for each test.

Since the reservoir has a 7.6-cm (3-inch) air gap at the top for 49 liters of cold fluid, less air gap was

present for these tests with hot fluid.

2.4 Predicting Second-Deree Burns. The U.S. Army Tank-Automotive Command (TACOM)

requires that an automatic fire extinguishing system (AFES) suppress hydrocarbon type fires within

250 ms. The inherent assumption is that any fire suppressed within that timespan will not cause bum

injuries to crew members of a vehicle. In an effort to put bum injuries on a more scientif

foundation, Walter Reed Army Institute of Research (Ripple and Mundie 1989) recommends, as a

criterion, a temperature-time integral. It is recommended that the value of air temperature over body

temperature be recorded over a ten-second period using thermocouples.

t

Tim * wwa) = f(T-37)dt
0

where T is in degrees Celsius, and t is in seconds.
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Figure 3. Hydraulic Reservoir Installed in FAASV.
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Figure 4. Reservoir with Powder Packs Installed.
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An integrated value of 13150 C-second over a ten second-interval is taken as the threshold of

second-degree bums on exposed skin. If the integral exceeds 13150 C-second, second-degree bums

are predicted for exposed skin.

In the case of skin protected by clothing, the recommendation is for the use of a ten-second

temperature integral value of 33000 C-second as the threshold. If this value is exceeded, second-

degree bums are likely.

Thermocouples were placed in the FAASV crew compartment at individual crew member

positions at eye, waist, and calf levels, except for the left rear and right rear thermocouples.

2.5 Fire-Out Time. The optical sensors presently in the FAASV were included in the powder

pack tests. The sensors have two thresholds: SF (small fire) and LF (large fire). For the SF, an

alarm is normally sounded, since small fires are not considered life threatening. For the LF, any

signal lasting longer than one millisecond will cause discharge of the halon bottles. The halon bottles

were not present during the powder pack tests, but the LF and SF signals were recorded. The FOT

(fire-out time) from the sensors is defined as the last SF signal out of any sensor minus the first LF

signal out of any sensor (Polyanski 1989a).

High-speed cameras (1000 frames per second) were also used in the powder pack tests. Five

cameras were positioned inside the -.rew compartment The FOT from the high-speed cameras is taken

as the time interval of the last frame with visible fire minus the first frame with fire. Each camera can

give its own FOT. The longest FOT is taken as the FOT by high-speed cameras, since this usually

represents the worst case.

The positions of the optical sensors and high-speed cameras are indicated for each powder pack

test in Appendices B and C.

Video cameras were also present inside and outside the vehicle to document the events. The

video rate of 30 frames per second does not provide information as precise as the fire sensors and

high-speed cameras provide.
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3. RESULTS

The results of the diesel-fuel tests with pertinent data are given in Table 1. Only one powder

pack was used on the bulkhead for each shot. A detailed description of each test is given in

Appendix B.

Both the 12.7-mm-thick and 6.4-mm-thick packs were able to give acceptable fire-out times. In

both cases, large amounts of powder were seen coming out of the openings in the vehicles. This is a

strong indication that there would be a serious loss of visibility in the vehicle even with a 6.4-mm-

thick powder pack.

Table 2 presents the results of the shaped-charge jet firings through the hydraulic fluid reservoirs

in the FAASV. In these tests, the four sides and the top of the reservoirs were protected by powder

packs. Since the reservoirs are located on a shelf in the vehicle, no powder packs were used under the

reservoirs. A detailed description of each test is given in Appendix C. For the hydraulic reservoir in

the FAASV, 12.7-mm-thick powder packs were required to achieve an acceptable fire-out time.

The design of the FAASV places the ammunition racks between the reservoir and the main

portion of the crew compartment. This restricts the flow of both fluid spray and powder. It is

expected that there would be less of a visibility loss at crew locations due to the powder, compared to

firings at the fuel cell.

4. DISCUSSION

4.1 Fuel Cell. Since the fuel cell of the FAASV is not really located in the crew compartment,

the occurrence of a catastrophic fire in the crew compartment is not likely. It is only the carrythrough

fuel mist that would normally be a fire problem for the crew. It was anticipated from previous work

(Finnerty 1987b) that a 12.7-mm-thick powder pack would be more than sufficient to give a fire-out

time of less than 250 ms. The first test, with the 12.7-mm pack, gave a larger-than-anticipated hole in

the aluminum bulkhead. This allowed a considerably greater quantity of fuel to flow into the crew

compartment than had been predicted. It was very encouraging to find that the 12.7-mm powder pack

was able to completely quench the diesel-fuel fire in 90 ms. This was interpreted as providing a high

amount of confidence in meeting tte fire-out time. It was also found that the test gave a larger-than-

II
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anticipated hole in the powder pack. Thus, it appears that, if a more energetic event gives a large fuel

spill, it will also cause the release of a large amount of powder to counter the extra fuel. It should be

noted that the powder pack was dislodged and thrown approximately 61 cm from the bulkhead.

The test with the 6.4-mm powder pack gave a hole in the bulkhead of the expected size. The

hole in the powder pack was also smaller than the case of the 12.7-mm pack. There was still

sufficient powder release to quench the fuel fire in about 110 ms. In this case the powder pack was

thrown approximately 91 cm from tie bulkhead.

It is interesting that when a fuel mist is released at the jet-exit hole, the mist travels along the jet

path, as expected. The powder from the damaged powder pack also travels along the jet path

(Zabel et al. 1988). The powder is thus preferentially transported to the place where it is needed, the

location of the fuel mist. Thus, even if, on the average, there is an insufficient powder release to

render the entire compartment nonflammable, there is locally a high powder concentration where there

is a high fuel-mist concentration. If it is desired to render the entire volume nonflammable, it is only

necessary to increase the thickness of the powder pack. This will automatically release more powder.

4.2 Hydraulic Reservoir. In regard to the hydraulic fluid reservoir, the fluid level was higher

than ideal when considering the passage of a shaped-charge jet through the reservoir. The

hydrodynamic ram effect associated with the event cau:sed fluid to squirt out of the filler pipe and out

of the vent cap on top of the reservoir. There was no initial release of powder at the top to mix with

this part of the released fluid. The relatively long fire-out times, especially in the case of the 6.4-mm

pack, are probably due to the difficulty of getting the powder to the fluid to quench burning.

Ordinarily, fluid mist is released only at the entrance and exit holes of a hydraulic fluid reservoir

(Finnerty 198T). When powder packs are broken open by the penetrator, powder immediately mixes

with fluid. Since fluid was released at the top, where there were no broken powder packs, it took a

certain amount of time before enough powder mixed with this portion of the fluid to quench the fire.

The problem could be easily solved by lowering the fluid level in the reservoir (Finnerty 1987b).

However, there was a desire to use the same hydraulic-fluid conditions as has been used on tests with

the halon system in the FAASV. It had been anticipated that there would be fluid escaping from the

top of the reservoir.

14



It should be emphasized that, in all cases of fluid containers in combat vehicles, passage of a

penetrator through the fluid produces large hydrodynamic ram pressures. Even when there was ullage

(headspace above the liquid) present, pressures over 68 MPa (10,000 psi) were measured by Zabel

when he fired a 90-mm shaped charge through a fuel cell (Zabel, to be published). The very high

pressure can cause failure of any weak part of a fuel cell or reservoir. The expansion of the fluid can

cause fluid loss at the top where plates are bolted onto the reservoir. Other sources of fluid losses at

the top of the reservoir are the fluid return line (plugged for these tests), the vent, the fill tube, and the

electrical pass-through for the fluid level indicator.

If sufficient ullage is present (the exact height of ullage must be determined in a case-by-case

approach), damage and fluid loss will be minimized. If no ullage (or insufficient ullage) is provided,

massive damage and a large loss of fluid is to be expected. One aspect of passive fire protection is to

provide sufficient ullage for containers of flammable fluids. The presence of ullage is only one of the

many design features that can be incorporated into fuel and hydraulic fluid containers when the

vehicles are initially developed (Finnerty 1987a).

No tests were deemed necessary against pressurized, hydraulic fluid lines since this had already

been addressed in a previous project (Firinerty, Meissner, and Copland 1985).

4.3 General Comments on Powder Pack Shots. Both diesel fuel tests introduced large amounts

of powder into the crew compartment. This may affect the heat transfer to the thermocouples. For

these fuel shots, the powder packs appeared to combat fire very effectively. In both cases, the powder

packs were dislodged from the plates to which they had been attached. More powder may have been

distributed into the compartment than would have been, had they remained attached to the plates.

The hydraulic reservoir shots am complex as far as how the fluid is introduced into the crew

compartment. Fluid can flow/spray through the holes at the front and rear of the reservoir, caused by

the passage of the shaped-charge jet. Moreover, there are vents, hoses, and gaskets at the top of the

reservoir. Because of hydrodynamic ram pressures generated in the liquid by the passage of the jet,

fluid was sprayed out of the top of the reservoir in addition to the fluid that sprayed out of the front

and back jet holes. The powder packs covering the front and rear plates of the reservoir were

destroyed or badly tom. Most of the powder was discharged from these powder packs. The powder

pack covering the top of the reservoir was also twisted, bent, and tom. This powder pack also

15



released fire-extinguishing powder. It appears that the powder released by the top powder pack does

not flow with the fluid as well as the powder from the front and rear faces. Fluid sprayed towards the

roof of the vehicle burned and caused a long fire-out time. It took a longer than acceptable time for

the powder to mix with the spray. Since the fire was confined to the roof section, there was no

potential for crew bums associated with this burning fluid.

It is interesting to note that there was no Large Fire signal on the first hydraulic fluid shot. Had

halon bottles been present, they would not have discharged. On the second fuel shot, the Large Fire

signal was on for no more than 1.1 ms. The halon bottles, had they been present, might not have

discharged. The other two shots wculd have involved the halon.

5. CONCLUSIONS

The following conclusions may be drawn from the use of powder packs to protect the FAASV

crew compartment from fuel and hydraulic fluid fires:

" Powder packs containing Purple K (potassium bicarbonate) fire-extinguishing powder

can provide fire protection.

" Powder packs as thin as 6.4 mm were sufficient to provide crew compartment fire

protection against fuel cell shots.

" In the case of hydraulic reservoir shots, 12.7-mm-thick powder packs were required to

achieve the required fire-out time of 250 ms. It should be noted that recent data

indicate that the 250-ms fire-out time benchmark may not be foolproof in predicting

second-degree bums (Polyanski 1989b).

* A generally accepted, nontoxic, nonenvironment-damaging material can be used in the

powder packs.

" Sufficient powder is expected to be released so that there will be irritation to eyes and

throat with loss of visibility. A change of air will be required to remove the

suspended powder from the air. There is little tendency for the powder to simply

settle out.
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Designs featuring passive, fire-prevention techniques should be incorporated into all

combat vehicles. This is true independent of what type of fire-extinguishing

techniques are employed.
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APPENDIX A:

TOXICITY OF "PURPLE K" FIRE-EXTINGUISHING POWDER
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"Purple K" powder is composed of the chemical potassium bicarbonate with approximately 2%

silicone agent to ensure that the powder is free flowing. A purple dye is added for ease of

identification. Purple K is a widely used fire-extinguishing powder, normally dispensed from

pressurized cylinders. Both the U.S. Navy and Coast Guard use it in portable fire-extinguishing

systems. It is not intended that the opeiator of the fire extinguisher be enveloped in a cloud of the

agent, although this is a distinct possibility. We have not encountered any reports of health problems

due to exposure to such a cloud.

Potassium bicarbonate is an unregulated food additive. While it is expected that exposure to a

high concentration of particles in air will cause only difficulty in breathing, coughing, and eye

watering with a burning sensation, with no long-term negative effects, this has not been demonstrated.

Before use of this material in a crew compartment where personnel may not be able to exit promptly,

tests should be carried out which expose animals to high concentrations of the agent.

A copy of the Materials Safety Data Sheet for Purple K fire-extinguishing agent is part of this

Appendix.
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APPENDIX B:

DESCRIPTION OF THE FUEL-CELL FIRINGS
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Both video and high-speed film cameras were positioned inside the FAASV. A video camera

was also positioned to observe the outside of the vehicle. Fire detectors inside the vehicle were

activated to observe any fires.

For each firing, a 90-mm HEAT warhead was set up two cone diameters from the vehicle armor

(25-mm aluminum). The shotline for both tests was into the right side of the vehicle, 450 from the

perpendicular, toward the rear of the vehicle. This allowed the jet to pass through the armor, entering

the fiberglass fuel cell and passing through the fuel. When the jet exited the fuel cell, it passed

through the 12.7-mm aluminum bulkhead, through the powder pack, and into the crew compartment.

The vehicle was essentially empty. No ammo, stowage items, etc., were present.

Both fire-extinguishing powder and fuel mist followed the jet into the crew compartment. Hot

metallic spall was produced when the jet struck interior parts of the vehicle and/or the far wall of the

crew compartment. While the hot spall provided an excellent ignition source, the fire-extinguishing

powder was mixed with fuel spray even before ignition.

Since the hatches of the vehicle were closed before each test, the only light available inside the

FAASV was from the jet, the hot spall, and the burning fuel. The fire-out time was taken as the

longest time fire was seen inside the vehicle, whether seen by high speed cameras or optical fire

sensors.

Test 1. A 12.7-mm powder pack was attached to the 12.7-mm aluminum bulkhead, which

separates the fuel cell from the crew compartment. Since the powder pack was intended to protect

only the crew compartment from fire, only one pack was used. It was installed on the crew

compartment side of the bulkhead so that powder would be released in the crew compartment.

When the shaped-charge device was fired, large clouds of powder were observed (from the video

viewing the exterior of the vehicle) exiting the vehicle from all available openings. The powder

continued to exit for several minutes (there was no forced ventilation installed in the test vehicle.) It

certainly appeared that if no collector had been used to catch fuel, which flowed out of the entrance

hole in the armor, there would have been a large ground fire. It is important that a vehicle be capable

of driving away from ground fires that result from combat hits. Such fires have been noted even with

halon systems.
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The fire-out time inside the crew compartment was 90 ms by high-speed camera data and

107.1 ms by optical sensor data, well within the goal of 250 ms. Thermocouple data gave a maximum

temperature-time integral of 941* C-second. This yields a prediction of no second-degree bums on

exposed skin.

When the interior of the vehicle was examined the next day, considerable powder residue was

found on all surfaces. The fire-extinguishing powder does not ordinarily show much tendency to settle

out of the air because of the small size of the particles. It is quite possible Lhat, since this vehicle had

been used previously for many fire tests, there may have been a film of oil on the interior surfaces.

The powder would have a tendency to stick to such a surface in preference to a dry surface.

The location of the thermocouples, cameras, sensors, and their data, along with the shot line for

the first fuel shot is given in Figure B-I. Views of the powder pack before and after the shot ae

given in Figures B-2 and B-3.

Test 2. A 6.4-mm-thick powder pack was attached to the 12.7-mm aluminum bulkhead, which

separates the fuel cell from the crew compartment. Since the powder pack was intended to protect the

crew compartment from fire, only one pack was used. It was installed on the crew compartment side

of the bulkhead so that powder would be released in the crew compartment.

When the shaped-charge device was fired, large clouds of powder were observed (from the video

viewing the exterior of the vehicle) exiting the vehicle from all available openings. The powder

continued to exit for several minutes (there was no forced ventilation in the test vehicle.)

The fire-out time inside the crew compartment was 110 ms from high-speed camera data and

155.0 ms from optical sensor data. This was less than the 250-ms criterion. Thermocouple data gave

a maximum temperature-time integral of 6460 C-second. The prediction is that there will be no

second-degree bums on exposed skin.

The next day a film of powder was observed on all surfaces inside the vehicle, just as in

Test 1. Also, as in Test 1, it appeared that a large ground fire would have occurred had a fuel catcher

not been used to collect the diesel fuel spilled outside the vehicle. Locations of thermocouples,
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cameras, sensors, and their data, along with the shot line are given in Figure B-4. Views of the

powder pack before and after the shot are given in Figures B-5 and B-6.
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Path of shaped-charge jet

A A A Thermocouples

Q 2 . C ) Halon bottle-not used

A Sensor

EZ High-speed camera

12.7-mm powder pack
Sensor fire-out time: 107.2 ms
High-speed camera fire-out time
A -data lost
B - 59 ms
C -90ms
D -52 ms
E - 63 ms
Maximum temperature integral 9590C-sec
Met fire-out time criteria with no second-degree burns.

Figure B- 1. Locations of Thennocoubles. Cameras. Sensors, and Shot Line for Firs Fuel Shot.
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Figure B-2. Powder Pack Before First Fuel Shot.
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Figure P-3. Powder Pack After First Fuel Shot.
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'A Path of shaped-charge jet

A Thermocouples

Q, Halon bottle-not used

-D Sensor

~i1~ High-speed camera

6.4 mm powder pack
Sensor fire-out time: 155.0 ms
High-speed cameras fire-out times
A - 110 ms
B - 101 ms
C - 49 ms
D- 66ms
E - data lost
Maximum temperature integral 664*C -sec
Met fire-out time criteria with no second-degree bums.

Figure B-4. Locations of Thermocouples. Cameras. Sensors, and Shot Line for Second Fuel Shot.

35



Figure B-5. Powder Pack Before Second Fuel Shot
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Figure B-6. Powder Pack After Second Fuel Shot
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APPENDIX C:
DESCRIPTION OF THE HYDRAULIC FLUID

RESERVOIR TESTS
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Both video and high-speed film cameras were positioned inside the FAASV. Video was also

available to observe the outside of the vehicle. Fire detectors inside the vehicle were activated to

observe any fires.

For each test a reconditioned hydraulic fluid reservoir was bolted into place on its shelf at the

front of the FAASV crew compartment. All openings, except the filler tube and the vent, were sealed

shut. The four sides and the top of the reservoir were covered with powder packs of the appropriate

thickness. No powder packs were used under the reservoirs, since the reservoirs are normally

positioned on a shelf.

Empty steel ammunition racks were installed for each shot. The reservoir side of the racks

contain plugs to seal each of the 90 projectile tubes. The racks with plugs effectively confine both

fluid spray and released powder to a small volume between the back of the reservoir and the

ammunition racks.

For each firing a 90-mm HEAT warhead was set up two cone diameters from the front wall of

the vehicle. The shotline for both tests was through the front armor of the compartment (25.4-mm

aluminum) into the vehicle, where i: passed through approximately 20 mm of air before encountering

the reservoir. The reservoir was surrounded on five of its six sides by powder packs. Therefore, the

jet had to break through a powder pack before hitting the reservoir. The walls of the reservoir were

made of 6.4-mm-thick mild steel. 'Ae jet passed through the reservoir, encountering approximately

200 mm of fluid. Upon exiting the reservoir, the jet had to break open a second powder pack on the

exit side of the reservoir. The jet then traveled through approximately 64 mm of air before

encountering the ammunition racks. The jet passed through the racks and continued across the vehicle.

The video, high-speed film cameras, and fire detectors were all set up to observe the duration of

burning of the hydraulic fluid released from the reservoir. The longest time of evidence of fire from

any of the three records was taken as the fire-out time.

Test 3. For this test, the five powder packs used to surround the reservoir were each 12.7 mm

thick. Approximately 59 liters of hot hydraulic fluid were poured into the reservoir through the filler

tube. The fluid was overheated to allow for cooling to 650 C at shot time.

41



The 90-mm HEAT warhead (M28A2) was positioned and fired. The jet passed through

25.4 mm of aluminum armor, approximately 20 mm of air, and then struck the 12.7-mm powder pack.

The jet then went through the 6.4-mm mild steel of the reservoir and approximately 200 mm of

hydraulic fluid. The jet then exited through the second 6.4-mm mild-steel wall of the reservoir and

broke open the second 12.7-mm powder pack. The jet continued through the empty ammunition rack.

Hydraulic fluid and Purple K fire-extinguishing powder were both released at the entrance and exit

sides of the reservoir. However, because of hydrodynamic ram pressure, fluid was also released at the

filler tube and vent on top of the reservoir. This fluid was ejected upward toward the roof of the

vehicle.

The first powder pack struck by the jet, positioned between the front wall of the vehicle and the

reservoir, was almost completely destroyed. The powder pack between the reservoir and steel rack, on

the jet exit side of the reservoir, waz bent, twisted, and torn. The powder pack on the top of the

reservoir was also bent, twisted, and tom. The two side powder packs remained intact.

The fire-out time from high-speed camera data was 199 ms. The optical sensors failed to give a

LF signal; therefore, they did not see the hydraulic fluid fire. This may have been caused by the

unusual location of the hydraulic fluid fire, close to the roof section of the vehicle. The fluid ejected

upward did not have much powder with it, due to the limited breaking of the top powder pack. The

sensors may not have had a good field of view of this fire. Howc ver, the 250-ms criteria was met for

fire-out time.

Thermocouple data gave no significant data. This is probably because the burning fluid was

mainly close to the roof. The fluid that exited the reservoir, following the jet, was stopped by the

ammunition rack. There would have been no second-degree bums on any crew member's exposed

skin.

It is interesting to note that there was very little powder in the crew area of the compartment after

the test. The ammunition racks effectively confined both hydraulic fluid and powder to the very front

of the compartment. External video showed large clouds of powder exiting the front of the vehicle via

hatches blown open by the event. There was no external fire. Locations of thermocouples, cameras,

sensors, and their data, along with the shot line are given in Figure C-I. Views of the powder pack

before and after the test are given in Figure C-2 and C-3.
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Path of shaped-charge jet

A A Thermocouples

A 3 Q Halon bottle-not used

C~ Sensor
A At 

High-speed camera

4

AI Al____

12.7-mm powder pack
Sensor fire-out time: 0 ms
High-speed cameras fire-out time
A- 71ms
B - 199 ms
C - 147 ms
D - 136 ms
E - 53 ms
Maximum temperature integral-no significant
temperature data from the thermocouples
Met fire-out time criteria with no second-degree burns.

Figure C-1. Locations of Thermocouples, Cameras, Sensors, and Shot Line for First Hydraulic
Fluid ShoL
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Figure C-2. Powder Packs Before First Hydraulic Fluid Shot.
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Figure C-3. Powder Packs After First Hydraulic Fluid Shot.
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Test 4. For this test, the five powder packs used to surround the reservoir were each 6.4-mm-

thick. Approximately 59 liters of hot hydraulic fluid were poured into the reservoir through the filler

tube. The fluid was overheated to allow for cooling to 650 C at shot time.

The 90-mm HEAT warhead (M28A2) was positioned and fired. The jet passed through

25.4 mm of aluminum armor, approximately 20 mm of air, and then struck the 6.4-mm powder pack.

The jet then went through the 6.4-mm mild steel of the reservoir and approximately 200 mm of

hydraulic fluid. The jet then exited through the second 6.4-mm mild-steel wall of the reservoir and

broke open the second 6.4-mm powder pack. The jet continued through the empty steel ammunition

rack.

The powder pack first struck by the jet was almost completely destroyed. The powder pack on

the exit side of the reservoir was bent, twisted, and torn. The powder pack on the top of the reservoir

was also bent, twisted, and torn. The two side powder packs remained intact.

This test did not meet the fire-out time criteria of 250 ms. Internal video observed a fire near the

roof for approximately four seconds. Fire-out time from the optical sensors was over 2000 ms. This

was due to the lack of powder near the roof where the fluid burned. This test of a set of 6.4-mm

powder packs was considered a failure.

The thermocouple data were more encouraging. The maximum temperature-time integral was

5860 C-second. The assessment was that no crew member would have suffered second-degree bums

on exposed skin. Again, it was probably due to the location of the fire near the roof. The

ammunition rack effectively prevented most of the hydraulic fluid from reaching crew positions.

Figure C-4 gives locations of cameras, thermocouples, sensors and their data, along with the shot line.

Views of the powder packs before and after the shot are given in Figure C-5 and C-6.

Very little powder was observed in the crew area of the compartment. There was no external

fire. External video did show large clouds of powder exiting the front of the crew compartment via

hatches blown open by the event.
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V RESERVOIR FUEL1

0 

Path of shaped-charge jet

A Thermocouples

Q Halon bottle-not used

D Sensor

C

A A High-speed camera

D Video camera

4

6.4-mm powder packs
Sensor fire-out time: 2107.4 ms
High-speed cameras fire-out time
A- 82ms
B - 152 ms
C- 1060 ms
D - 1600 ms
E - 37 ms
Maximum temperature integral 604°C-sec
Did not meet fire-out time criteria, but no second-degree bums.

Figure C-4. Locations of Thermocouples. Cameras. Sensors, and Shot Line for Second Hydraulic
Fluid Shot.
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C-5. Powder Packs Before Second Hydraulic Fluid Shot.
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C-6. Powder Packs After Second Hydraulic Fluid Shot.
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OLD Organization
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Address

City, State, Zip Code
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